In-Built Customised Mechanical Failure of 316L Components Fabricated Using Selective Laser Melting

نویسندگان

  • Andrei Ilie
  • Haider Ali
  • Kamran Mumtaz
چکیده

The layer-by-layer building methodology used within the powder bed process of Selective Laser Melting facilitates control over the degree of melting achieved at every layer. This control can be used to manipulate levels of porosity within each layer, effecting resultant mechanical properties. If specifically controlled, it has the potential to enable customisation of mechanical properties or design of in-built locations of mechanical fracture through strategic void placement across a component, enabling accurate location specific predictions of mechanical failure for fail-safe applications. This investigation examined the process parameter effects on porosity formation and mechanical properties of 316L samples whilst maintaining a constant laser energy density without manipulation of sample geometry. In order to understand the effects of customisation on mechanical properties, samples were manufactured with in-built porosity of up to 3% spanning across ~1.7% of a samples’ cross-section using a specially developed set of “hybrid” processing parameters. Through strategic placement of porous sections within samples, exact fracture location could be predicted. When mechanically loaded, these customised samples exhibited only ~2% reduction in yield strength compared to samples processed using single set parameters. As expected, microscopic analysis revealed that mechanical performance was closely tied to porosity variations in samples, with little or no variation in microstructure observed through parameter variation. The results indicate that there is potential to use SLM for customising mechanical performance over the cross-section of a component.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanical and electrochemical properties of multiple-layer diode laser cladding of 316L stainless steel

In the present investigation, a detailed mechanical and electrochemical properties of multiple-layer laser clad 316L stainless steel (from the powders produced by gas atomized route) has been carried out. Multiple-layer laser cladding of 316 L stainless steel has been conducted using a diode laser. The mechanical property (microhardness) of the fabricated product has been evaluated using a micr...

متن کامل

Comparison of high‐intensity sound and mechanical vibration for cleaning porous titanium cylinders fabricated using selective laser melting

Orthopedic components, such as the acetabular cup in total hip joint replacement, can be fabricated using porous metals, such as titanium, and a number of processes, such as selective laser melting. The issue of how to effectively remove loose powder from the pores (residual powder) of such components has not been addressed in the literature. In this work, we investigated the feasibility of two...

متن کامل

Parameter Study of GTN Model in a SLM Manufactured Lattice Structure under Compression by Using FEM

This study investigates the effect of material parameters of the Gurson-Tvergaard-Needleman (GTN) model on the failure prediction of cellular structures. The effect of elastic modulus, calibration parameter of GTN model, isotropic hardening, fracture strain, and strut diameter on the load-displacement curve of a lattice structure fabricated by Selective Laser Melting (SLM) has been studied by u...

متن کامل

Influence of Scanning Strategies on Processing of Aluminum Alloy EN AW 2618 Using Selective Laser Melting

This paper deals with various selective laser melting (SLM) processing strategies for aluminum 2618 powder in order to get material densities and properties close to conventionally-produced, high-strength 2618 alloy. To evaluate the influence of laser scanning strategies on the resulting porosity and mechanical properties a row of experiments was done. Three types of samples were used: single-t...

متن کامل

Modeling of selective laser sintering/selective laser melting

Selective laser sintering and selective laser melting are powder based additive manufacturing (AM) process that can rapidly manufacture parts with comparable mechanical properties to conventional manufacturing methods directly from digital files. However, the processing recipe development and design optimization of AM parts are often based on trial and error which erodes the benefit of AM. Mode...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017